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TECHNICAL NOTE 43L49

HEAT TRANSFER AND THERMAL STRESSES
IN SANDWICH PANELS

By Robert T. Swann
SUMMARY

Calculated maximum temperature differences between faces and cal-
cuwlated thermsl stresses are presented for sandwich panels with a pre-
scribed linear rate of temperature rise at one face and with the other.
Pace insulated. Effects of conduction and radiation are included. Maxi-
mum temperature differences between top and bottom faces are considerably
less when both radiation and conduction are considered than when radla-
tion is neglected. From the calculated data an equation is derived that
relates the meximum temperature difference to the maximum temperature
difference when conduction only is considered. An approximate method for
including effects of radiation in calculations of temperature difference
is presented.

INTRODUCTION

One of the structural configurations being used for supersonic sir-
creft utilizes a sandwich psnel for the load-carrying skin. The state
of stress in such panels can be appreciebly altered by thermal stresses
resulting from aerodynemic heating. In order %o calculate thermal
stresses, the temperature distribution through the panel mist be known.

For solid cores, only heat transfer by conduction need be considered
and the temperature distribution can be readily calculeted by an appro-
priate idealization of the sandwich panel into a one-dimenslonal heat-
conduction problem. If, however, air spaces are present in the core,
an apprecisble smount of heat can be transferred by radiation, with the
result that the temperature gradients end the resulting thermal stresses
are reduced. The heat transferred by radiation can be included in the
one-dimensional hest-balance equation, but because heat transfer by radia-
tion is proportional to the fourth power of the gbsolute temperature, the
result is a nonlinear differentisl equation which is difficult to solve.

In the present paper equetions are derived for calculating the tem-
perature distribution in eny sandwich panel in which conduction is pre-
dominant. Results of an investigation to determine the effect of
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including heat transfer by radiation in an analysis of the temperature
distribution in honeycomb sandwich panels are also presented. The effect
of radiation is evsluated by comparing the maximum temperature difference
obtained between the panel faces when radietion is considered with that
obtained when radiation 1s neglected, all other factors being unchanged.
These meximm temperature differences are then empirically related.

Most of the calculated results were obtained with a Reeves Electronic
Anslog Computer. However, an approximate analytlcal method for calculating
temperature when both radistion and conduction must be consldered is pre~
sented In an appendix. Limited experlmental evidence of the wvalidity of
the theory is given.

SYMBOLS
A ares
AA solidity of core
B temperatﬁre-rise rate of core
c arbitrary constant
c heat cepecity of material
D arbitrary constant
E modulus of elasticity
Fn,m overall configuration factor
Fﬁ,m configuration factor
G() arbitrery function of time
g(s) Laplace transform of G(T)
h . core height
K diffusivity, k/cp
k thermal conductivity
L Laplace transform
-t inverse Laplace transform
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P perimeter of cells of core

Q rate of radiant heat exchange between one polnt and all
other polnts

a rate of heat exchange between two points

‘s width of square cells in honeycomb panels

T gbsolute temperature

T! absolute temperature less initial temperature

T nondimensional temperature

AT difference between the temperatures of the faces of the
panel

t thickness

W core density

X distance from unheated face of penel

o coefficient of thermal expansion

B roots of the equation B tan B = EAE‘-

tF

¥ constant

€ emissivity; strain

] Leplace transform of T!'

A dummy varigble of integration

3 dummy variasble of integration

p density of material

o Stefan-Boltzmann constant; stress

T time

nondimensionel time, OKr /h2

il
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@ function for configuration factors

Subscripts:

1,2,3,4,5 stations as identified in figure 1

a,b,c,d,e temperatures defined in sppendix B

C conduction only

eff effective

F unheated face

i positive Integer

m,n integers between 1 and 5

max maximum

o) initiael condition —
THEORY

The problem to be conslidered 1s the transfer of heat through a
sandwich panel, one face of which experiences & prescribed tempersature
history which is a funetion of time only. For solid-core sendwich panels,
the only mode of heat transfer which must be considered is conduction.

If the panel is sultably idealized and suitable boundary conditions are
selected, an exact solution can be obtained by employing the well-known
one~dimensional partial differential equation of heat balance which
governs the transfer of heat by conduction. When air spaces exist in
the core, significant amounts of hest may be transferred by radiation
from the hot face to the cooler face and to the core elements. When

the heat transferred by radiation is incorporated into the differential
equation for heat belance, the result i1s a nonlinear partial differentisl
equation with variable coefficlents, the exact soclutlon of which is dif-
ficult, if not impossible. The problem cen be solved by resorting to an
approximate analysis which results in a set of nonlinear ordinsry dif-
ferential equations suitable for solution on an analog computer.

The following assumptions were made in this analysis:
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2. Convective heat transfer is negligible.
3. The temperature of any plane parallel to the faces is uniform.

In order to obtalin a solution which does not involve unnecessary
complications, the actual core of the sandwich is idealized as follows.
It is assumed that the temperatures of the faces of the sandwich are
respectively uniform; therefore, there will be no transfer of heat by
conduction in these faceg. Because of this, the face material can be
considered as concentrated heat cgpacltors located at the ends of the
core elements. It 1s elso assumed that there is no joint resistance
between the faces and the core elements, and the thickness of the material
used to attach the faces to the core is converted on the basis of heat
capacitance into an equivelent thickness of face material which is then
included in the concentrated heest capacitors.

The core is comsidered as a slseb with effective thermal properties
based on the solidity of the core:

kerr = k AA

(cpleps = cp LA

Kefr = Ek-.;
where
k thermal conductivity of core
AA solidity of core
cp product of heat capacity end density
K diffusivity
Conduction

For honeycomb panels having internel surfaces of low emissivity,
or for panels with solid cores (e.g. ;5 foem core or leminasted plastic
core), effects of internal radistion may be negligible. The problem of
heat transfer In these panels reduces to one-dimensional heat conduction
in the core, governed by the differential equation
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2
1 a(x,7) _ 3 0(x,T) (1)
K or ax2

The inltial temperature of the sandwich is assumed to be uniform:
T(X,O) = To (2&)

The assumed boundary conditions are

T(h,T) = G(T) (2p)

3(0,7) _ b am(0,7)

(2¢)
ax KAA  Or
where
T gbsolute temperature
Ty initial absolute temperature
tp idealized thickness of the unheated face
T time
X distance from the unheated face
h core height
a(T) prescribed function of time

Equetion (2b) follows from the assumption that there 1s no thermsl
resistance between the core and the face, and therefore the end of the
core 1s at the prescribed tempersture of the feace.

In order to simplify this investigatlon, the unheated face was
assumed to be lnsulated ageainet heat loss. Equation (2c) is derived in
appendix A from this assumption, plus the conditions that the face tem-
perature is uniform and that there 1s no Joint reslstance between the
core end the face. It 1s also assumed that the face and core are made
of the same material. In order to extend results based on this equa-
tion to sandwich panels in which faces and core are made of different
materials, an effective face thickness should be used. This effective
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face thickness is equal to the idealized face thickness multiplied by
the ratio of cp for the face material to cp Ffor the core material.

The solution of these equations for the temperature at any point
is derived in appendix A by means of the Laplace transformation and is

KB 2(
T =221 (T-2)
T(x,7) = T, + X i B sin B(1 - x) G(N)e h2 aa (3)
h2 i=1 sin 2& + 1 o
where B3 are the roots of the equation
By tan py = 228 (&)

tF

A partial listing of the roots of this equation is given in teble I.
A more extensive table is presented in reference 1.

For the tempersture of the unheated face x = 0, equation (3)
reduces to

KB: 2
. -
_ 2K AA cos B j c¢(n)e b2
O = %o * St glgg_z_hl o I
28

T=A)
aa (5)

If G(v) is & linear function of time, BT, the followlng expression
is obtained by substituting the transform of Bt into the transformed
equation (A8) before taking the inverse transformation:

Kp42
2| tp cos B -haT
) 2| *%* 1 _onoa 6
T(0,T) = T, + B 4T K |o Ak 2 tp gﬂih(.s_jﬂﬂ+l)e @
28
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The series in this equation is more repldly convergent then the one
that would be obtained by substituting G(T) = BT 1in equation (5).

Conduction and Radiation

If radiant heat transmission is to be considered, the heat balance
must Include net radlant heat exchange as well as conduction. Net radi-
ant heat exchange between two isothermal surfaces A; and Ap (as

viewed from Aj) can be computed from the expression

9,2 = ‘“eAlFi,z(Tll‘ - Te’*) (1)
where:
o] Stefan-Boltzmann constant
€ emlissivity

The factor Fi,a 1s a function of the geometriec relatlon between sur-

faces A] and Ap. This geometric relation is referred to as the con-
figuration factor and is defined as the fraction of the total radiant’
flux leaving Aj; +that is incident on Ap. (See ref. 2.) For the core,
the area In the sbove relatlon can be expressed as P dx, where P 1is
the perimeter of the core at a cross section parallel to the faces;
therefore equations (1) and (7) can be combined in the following form to
include the effects of radistion:

2 h _
1 o0(x,7) . 97T(x,7) _ OeP |mh - 4 -
K aﬁ = ax’é = - ;AA TH(x,7) fo Py (x,8) TH(E,T) dg

9a(x) TH(h,T) - ps(x) T“(o,-r)] (8)

The symbols @ denote configuration factors. The terms in brackets

represent the net radlant heat exchange et any point; the first term
gives the heat emitted from the point, the second term is the heat flux
from all other points of the core to the point in questlion, and the last
two terms are the heat flux from the faces to the point.

The initial temperature (eq. (2a)) and the boundary condition at
the heated face (eq. (2b)) are unchanged, but the boundary condition at
the unheated face becomes:
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1 30(0,7) _AA ¥X0,7) _oe |dho Ly - [0 u _
¢ EO LA WG] e lrbo,) - [T (o) THE) a8 - 05 THmT)

(9)

where @; again denotes the configuration factors and the terms in
brackets represent the net radiant heat flux at the unhested face.

Since no exact methods of solution for equations of this type are
known, a finite-~difference procedure will be used. Thils is done by
taking three stations in the core and one station at each face. (See
fig. 1.) Now equation (8) and its boundery conditions can be expanded
by finite differences to a system of four ordinary differential egque-
tions. In order to expand the radistion terms of equation (8) into
finite-difference form, let Fp,m be the fraction of radlant flux
leaving all faces at station n whileh is incident on all faces at sta-
tion m, multiplied by the area of all the faces at station n, based on
unit area of the face plates. IExpension of the redlatlion terms in equa-
tions (8) and (9) into finite differences then gives for each element n
a term

2 B ook
Qp = -oe 2:1 Fn,m(Tn - T (10)
m=

Therefore, in terms of finite differences, equation (8) and its boundary
conditions become

T o= 4 glBT (11a)
1 Q 9K
aTp ceh L L
—S =0T, - s 4+ T ____zz F Tst - 11b
= 1 - 3T2 + T3 T 0R 2,m(2 m (11p)

&5 Tp - 2T + Ty, - I8 i F3,m('l‘31" - Tml‘) (11c)
T m=1
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) - _ _ageh L _m L
F-T5 3Ty + 2Ts 5kAA§F”’m(T4 Tm) (114)
a5 _h Moy, - om) - BOA oeh STp ok gk N
a7 BtF( b 5) 3ty 3k AR oy 5’m(5 Tm) (11e)
where
7 - XK1
B2
and the initilel conditions are
T=0 T, = To

Equations of this type are readily solved on an analog computer equipped
to generate fourth powers of the dependent varigble.

The solution of equations (11) can be made considersbly more gen-
eral by using a nondimensional temperature parsmeter T, which is

defined by the following relation:

T, (12)

/3
)l

3k AA
T, =
n 7( gen

where 7 1s a constant which msy be selected so that the problem falls
in the desired computer range of tempersture.

Substituting this expression for T, into equations (11) and

. 15
dividing by 7<M) glves
oeh

Tl = 'fo + (158‘)
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4T _ - — — —
d__‘?'. =2T) - 3To + T3 - 73 iF2,m(T2)+ - Tmh.) (13b)
T m=1
aT:
5 = Zk_ 5 4)
am _ - _ — -
—* = T3 - 3T, + 2T - iF%m(Thu ) Tmh) (154)
dT m=1
D> _noafm g5 - hok 5S (=" T
— - - — T =
— - <2Th_ 2T5) S0 1 2 F5 m\Ts - Ty (13e)

with the initial conditlon

geh

An approximete procedure for calculating the temperature of the unheated
face is presented in asppendix B.
Thermsl Stresses

Temperature differences between faces of sandwich panels cause
unequal expansion of the faces and result in thermal stresses. An Indi-
cation of the magnitude of these stresses can readily be obtained if the
following assumptions are made:

(1) Material properties are independent of temperature.

(2) The core is rigid in shear.

(3) The faces remain plane and all edges are free to expand.

(%) The core taekes no load.
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The stress-strain relations are
€ = == + alq
= EE + olp
Ep
where
€ strain
o1 stress in heated face
op stress in unheated face
E modulus of elasticlty
o coefficient of thermsl expansion
Ty  temperature of the unheated.face, Ty or T(0,T)

For equilibrium,

Therefore, the stresses in the faces are

\
5 o o Ea AT
1= -
t
1+ =
tr
_ Eo, AT
O g
1+ —
121

where:

AT =Ty - Tp

NACA TN L3hg

(14)

(15)

(16)



NACA TN k3hg 13

RESULTS AND DISCUSSION

Solutions were obtained for &ll combinations of the followling
parameters:

hy In. & ¢ v v v i i h h t e e e e e s e s e s .. . 0.2, 0.3, 0.4, 0.5
DA . . i i e i i e e i e e e s e e e e e .. 0.02, 0.025, 0.03, 0.0k
B, IMe ¢ ¢ v v i e e e 4 e e e s e e .. .. 0.01, 0.02, 0.03, 0.05
B, OR/S8€C & « + ¢ + 4 ¢ 4+ 4« 4 e s e s e e e e e .. 5,10, 20, 50
co, Btu/(fts)(oR) 1o
Tos R . . C ot e e e e et e e e e e e e e e .. 500
k; (Btu(ft)/(hr)(OR)(ftE) T -

In all cases the face thicknesses listed here were modified in the cal-
culations to include 0.002 inch of face material aes the thermsl equiv-
alent of the braze or other material used to fasten the core to the face.
For cases in which radiation is considered, the core is assumed to con-
sist of 1/b-inch-square cells with emissivity equal to 0.8. Configura-
tion factors used in the calculatlions are given in table II.

Typical results are shown in figure 2. The curve identified as Ty

is the prescribed temperature of the heated face, which in this case
experiences a temperature rise B of 10° R per second. The curve
marked Tp ¢ 1s the temperature response of the unheated face calculated

from equation (5), which applies when radiation 1s neglected. A com-
parison of this curve with results calculated numerically and by analog
computation from equations (13} without the radiation terms revealed
differences too small to be shown on this plot. The curve identified
as Tp 1s the temperature of the unheated face calculated from

equations (13).

As would be expected, the temperature difference between the heated
face and the unheated face is more when radiation is neglected. The tem-
perature difference is essentially constant at its maximum value after
150 seconds when radiation is neglected. (From eq. (6) it is obvious
that the maximum occurs as time approaches infinity.)

The meximum temperature difference with conduction only can be cal-

culeted by subtracting equation (6) from equation (Zb). As time beccmes
large, this difference becomes

(ATga)c = - i) (27)
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The maximum temperature difference with radistion and conduction was cal-
culated on an analog computer from equation (11). When these maximum
temperature differences were plotted with (Ammax)c as abscisse and

ATpeax 8as ordinate for each case listed at the begimning of this section,
8ll the polnts lay within the envelope shown 1n figure 3.

_ Since all the points lle In a narrow band, regardless of the values
of the parameters, 1t appears that the effect of radiation depends chiefly
on the magnitude of the temperature difference which would be obtained

by considering conduction only.

The dashed line in figure 3 represents the data in the interval

120 < (Ayay)c < 3,000

with a maximum error of about 10 percent.

An aspproximate equation for this line 1s

Aoy = 21.9 (ATma_x)c - 135 (18)

If equation (17) is substituted for (AT in equation (18), the
max JC

following expression is obtalned for the maximmm temperature difference
when both radlation and conduction are considered:

_ B tr |
ATpex = 21.9h E(}TA—K + %) - 135 (120 < (Ammax)c < 3,000) (19)

Dimensionless Analysis

Calculated maximum temperature differences are presented in dimen-
sionless form in figure 4. The maximum dimensionless temperature dif-
ference is plotted as a function of the ratio h AA/ty for several
values of dlmensionless temperature-rise rate.’ Each plot is for constant
initial dimensionless temperature, since

_ -1/3
7, -To (zk AA)
7 \ ceh
Also, each plot is for a fixed value of the ratio h/S, vhere S 1s
the width of the square cell.

(20)
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On the logarithmic scale used, the curve of maximum dimensionless
temperature difference varies linearly with the ratio h AA/tF » and the

slopes generally decrease as the temperature-rise rate increases. How-
ever, it was not possible to derive & mathemastical reletion between the
slopes of the temperature-difference curves and the temperature-rise
rates which would lead to a simpler empirical spproximation to the maxil-
mum temperature difference than that given by equation (19). Figure 4
can be used to determine meximum temperature differences with greater
accuracy then is possible from equation (19).

Correlation of Theory and Experiment

The theory from which the results given in the present paper were
obtained assumes that no heat 1s lost from the unheated face of the
sandwich. There is a scarcity of data on sandwich penels tested under
conditions which match the theoretical assumptions. However, in a test
made in the Langley Structures research lsboratory a light-welght steel
honeycomb sandwich panel experienced a temperature-rise rate of
19.2° R per second at the heated face and experienced & radiant heat
loss at the unheated face of the sandwich. Heat was transferred from
the unhested face of the sandwich by radiation across an alr gap to a
steel backing plate. The sandwich panel properties were +tp = 0.005 inch,

w="T.2 lb/f'b3, end h = 0.3 inch. Test results are shown by the data
points in figure 5. The prescribed temperature of the heated face 1s
shown by the curve identified as T;. In order to compute the tempera-
ture histories of the sandwich faces, it was necessary to modify the
analysis to account for the radiant heat loss at the unheated face. It
was therefore assumed thet the unheated face of the sandwlich panel radi-
ated to a plate which remained at room temperature. The emissivities
of the backing plate and the unheated face of the sandwich were assumed
to be 0.6 and the internsl emissivity of the sandwich was assumed to be
0.8. The calculeted temperatures of the unheated face of the sandwich
are shown by the solid line identified as Tp and are in excellent
agreement with the test results for the first 50 seconds. After that
time, the temperature of the backing plate used in the test began to
rise and thus invalidated the theoretical assumption of constant tem-
perature and permitted no further basis for comparison. In order to
show the effect of radiation, a curve of calculated temperature is
included for the case in which radiation is neglected.

Thermal Stresses
In order to give more meaning to the megnitudes of the temperature

differences between the faces of a sandwich panel, a simplified elementary
stress analysis was made. If 1t is assumed that the panel remains flat,
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that the core takes no load, and that there is no external restraint to
expansion, the thermel stresses for equal face thicknesses are, from
equations (16),

o = EG£NT (21)

with the heated face in compression and the unheated face in tension.

Of course, the analysls overestimates the thermal stresses which actusally
exist; nevertheless, it provides a convenlent means of evaluasting the
effect of internal radiestion. For steel the product Ea 1is gbout 300
and thermal stresses are

o = ¥150 AT (22)

Therefore, a plot with maximm temperature difference as the ordlnate can
be readily converted into a plot with meximum thermsl stress as the ordi-
nate. If the temperature differences in figure 3% are converted into
thermal stresses, the lowest stress obtained is 15,000 psi. This result
indicates that large thermal stresses are to be expected when sandwlch
panels are heated. It appears from equation (19) that high core density,
thin unheated faces, and thin panels will be necessary in order to prevent
these stresses from becoming prohibitive. o -
However, 1f the ratio of face thicknesses t1/ty 1s increased,
compressive stresses diminish and tenslile stresses lncrease. Compres-
sive stresses can be reduced by any desired amount without increasing
tengile stresses by more than a factor of 2. This effect will now be
considered for a specific example. Take & steel honeycomb panel with
h = 0.3 inch, B = 200 F/sec, and w = 20 1b/ft3. Assume that the panel
is to be used in an application requiring a total face thickness of
0.1 inch; that is, 7 + tg = 0.1. The temperature information neces-
sary for evaluation of the thermsl stresses in this example can be cal-
culated from equation (19). It should be noted that, since the temper-
ature of the heated face is prescribed, 1ts thickness does not affect
the temperature difference. The face thicknesses given here are the
sctual face thicknesses and do not include a modification to account
for braze meterial. The stresses are glven by the equations

Gl’m -5, 000 ATmax tF

(23)
3,000 ATy (0.1 - tp) .

oF,max
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Thermal stresses calculated from these equations are plotted against
unheated-face thickness in figure 6. If the two faces have the same
thickness, the thermal stress in each face is 75,000 psi. Decreasing
the unhested-face thickness from 0.05 inch to 0.036 inch and increasing
the heated-face thickness to 0.064 inch reduces the stresses in the
heated face from 75,000 psi to 46,000 psi. Stresses in the unheated
face increase from 75,000 to 80,000 psi. Further reduction of the
unheated-face thickness wlll reduce thermel stresses in both faces.

CONCLUDING REMARKS

Calculations of temperafure distributions in sandwich panels, even
when internal radiation is present, are not difficult if analog computing
equipment is available. If internal radiation is present, the accuracy
of an analysis of maximum temperature difference between the top and
bottom faces of the panel, based on conduction only, decreases as the
tempereture difference increases.

If the temperature-rise rate of the heated face of the sandwich is
linear, a simple empirical relation exlists between the maximum tempera-
ture difference between the top and bottom faces of the panel and the
meximum temperature difference calculated when only conduction 1s con-
sidered. Approximate temperature differences can be calculated by con-
sidering the separate effects of radiation and conduction.

Even with relatively moderate heatlng, large temperature gradients
exist in sandwich panels and cause large thermal stresses. For a given
total face thickness, however, the magnitude of thermal stresses can be
materially reduced by decreasing the unheated-face thickness while
increasing the heated-face thickness by an equal amount.

Langley Aeronautical Isboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 9, 1958.
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APPENDIX A
CONDUCTION OF HEAT IN SANDWICH PANEIS

The differential equation for the linear conduction of heat is

1 3m(x,7) _ 3°(x,7) (A1)
K or 3

The initial condition is T(x,0) = To. The temperature of the heated
face, x = h, 1s prescribed as:

T(h,7) = G(T) (A2)

The rate at which heat leaves the core and enters the unheated face 1s

q=kAA§T—§:ll (43)

Inasmuch as 1t is assumed that the external surface of the unheated face
is insulated, the temperature-rise rate of this face is proportional to
the rate at which heat leaves the core:

BT(O;T) (Ah)

q = coty 3

Equating these expressions for q glves

Jr(o,7) _ _t¢ am(o,r)
ax == K AA oT . . (A5)

These equations are readily solved by means of the Laplace transforma-
tion. Let

T'(x,7) = T(x,71) - Tp
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The transformed equations are

&®0(x,8) _ 5 8(x,s) = O (A62)
ax2 K
8(h,s) = g(s) (AéDb)
aegi:s) - IS{tZA 8(0, 5) (a6c)
where
e(x,s) = L[T‘(x,'r{l
&(s) = L[a(n)]

The solution of equation (A6a) is

o(x,s) = C sinh (V.Is(: x) + D cosh (E x) (AT)

where C and D are constants to be determined from equations (A6b)
and (A6c). When C and D are evaluated, the transformed equation is

() - )
% [E st (\E h) + cosh (\E h)

An inverse transform of the equation can be expressed immediately as
a convolution of the arbitrary heating function with the other terms
of the equation:

8(x;s) = g(s) (a8)
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wwn)=Mﬂ*rl§V§“mﬁﬁk)+”“(ﬁx) (x<B) (49)

Z_i. \/1% sinh (\/g h) + cosh (\E h)

where IL~l indicates the inverse transform. The expression within the
brackets is single valued with simple poles, and by a formal spplication
of the Inversion integral it is found to be

_KBizr
X B sin B(L - x) b2 (A10)
h2i=l sin QB + 1
28
where
h AA
Therefore,
= ( -
T(x,7) = Tp + %—Z B sin BLL - x)f a(n\)e B an (x <n)
h 0

=T %& + 1
(A11)

The present paper 1s concerned with a linear temperature-rise rate at the
heated face and solutions cen be cbtained by substituting G(r) = Bt into
equation (All). However, by substituting the linear temperature-rise rate
into equation (A8) and egeln finding an inverse transform by a formal

epplication of the inversion integral, the following equation is obtained:

% )
T(x,'r) =Ty + B T+KA—i(x-h)+g(x2-h2) +

KBizT
%QKZ“: B sin B(1 - x) _ 12
- L/sin 28
=1 sin 28
P1 ( 28 +l)

(A12)

The series in this equation is rapidly convergent because of the appear-
ance of Bn4 in the denominator.
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APPENDIX B
ANATYTTCAT, APPROXIMATION WITH RADIATION AND CONDUCTION

A simple procedure 1s presented in this appendix for analytically
approximating the temperature of the unheated face of a sandwich panel
in which internal radiation is present. The following steps are involved:

(a) Celculate the temperature distribution, considering conduction
only.

(b) Calculate the radiant heat transmission to the unheated face,
assuming that the temperature distribution is that calculated in step (a).
Convert this heat input into & temperature rise.

(e) Correct the temperature of the unheated face for the radiant
heat input.

(d) Assume thet the actual conduction to the unheated face is pro-
portional to the difference between the temperature of the heated face
and the tempersture of the unheated face as calculated in step (c).
Calculate the temperature rise of the unheated face caused by this heat
input.

(e) Add the temperature rises calculated in steps (b) and (d) to
obtain the finsl approximestion to the temperature of the unheated face
of the panel.

Corresponding to each of these steps are temperatures which will be
designated as Tg, Tp, Te, Tg; and T, respectively. The tempera-

tures Ty are those calculated by considering conduction only (eq. (ALl)).
The radiant heat input to the unheated face (step (b)) can be calculated
by integrating equation (10), using the temperatures Tg. This heat input
can be converted to a temperature rise by dividing the integral of heat
input by the heat capacity of the unheated face. This temperature rise

is Tp.

The tempersture of the unheated face is now (step (c)):

Tc=Ta+Tb

From step (d), the heat conducted to the unheated face is

q = %ETl)a - (TF)a. - (TF)b]
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and the temperature rise caused by conductlion satisfles the relation

()

= cpt
q PTE ar

or

(Tp)g = hCI:’tF L [(’l‘l)a - (Tr)e jan

The temperature of the unheated face is the sum of the tempersture rises
due to conduction and radiation:

Te =Tp + Tg

Figure 7 compares results calculated on the analog computer from equa-
tion (13) with results calculated by the sbove procedure. The dashed
line is the result obtained on the analog computer. The dash-dot line
is (TF)C, which has a correction for the effect of radiation but does

not consider any interaction between radiation and conduction. The
solid line is (Tg)e. The close agreement between the solid and dashed

lines indicate that the approximate anslysis 1ls adequate up to the time
at which the maximum temperature difference is reached.
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TABIE I.- THE FIRST FIVE ROOTS OF THE EQUATION B; tan By = Eggé
h AA
_tF B1 B2 B3 By Bs
0.01 .0998 3.1448 6.2848 9.4258 12.5672

.06 2425 3.1606 6.2927 9.4311 12.5711
1 3111 3.1731 6.2991 9.4354 12.5743
.2 . 4328 3.2039 6.3148 9.4459 12.5823
.3 .5218 3.2341 6.3305 9.4565 12.5902
L .59%2 3.2636 6.3461 9.4670 12.5981
5 .6533 3.2923 6.3616 9.4775 12,6060
1.0 .8603 34256 6.4373 9.5293 12.6453
TABLE IT.- OVERALL CONFIGURATION FACTORS

Factor h _ h _ h _ h _
(a) —S- = O 8 g- = 1.2 -g = 1.6 g 2.0
Fo,1 o.ko7 - 0.527 0.620 0.676
Fp 3 164 .300 400 495
Fo b .092 .133 145 125
Fo.5 .128 .100 .080 .090
Fz 1 211 .220 .200 AT7T7
F5,l 252 152 .100 .0ko
8Rquivalent factors are:

Fo,1 =F5,4 =F4 5

Fp,3 = F3,20 =F3,1 = F) 3

Foou = Fiyn

Fo,5 =F5,2 = Fy 1

F3,1 = F3,5 = F5,3
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Figure 1.- Location of stations used in finite-difference analysis.

25



26 NACA TN L4349

1800

1600

1400

1200}

1000
T—To,

800 . g

600
Tg /

400 7
74

200

1

0 20 40 60 80 100 120 140 160

Time, sec

Figure 2.- Typical calculated results. h = 0.5 inch; tp = 0.05 inch;
w = 15 1b/ft3; B = 10° R per second.



NACA TN 43kg 27

20x10°

\

7

g
7/

Average
\// Envelope

)

A Y/

N
DN

N

I 2 3 4 5 io 20 30x10®

(ATmax) c
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as a function of maximum temperature difference with conduction only.
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Figure 6.- Maximum thermal stress ss a function of unheated-face thick-
ness for constant total face thickness. %1 + tg = 0.1 inch;

h = 0.3 inch; w = 20 1b/ft3; B = 20° R per second.
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